子增殖反应堆的小型化应用’,确实领先于时代二十年,但只要它正式启用,不出五年,那些发达国家就能模仿出来,除非这项技术永远封存起来不使用。”
杨伯伯、陈伯伯与宁青筠都专心地听着他说话,只听秦克以自信的语气道:“所以我认为,真正的领先,应该是在有了领先优势之时,着眼未来,保持着奋进的心态,不断地追求突破与进步,而不是抱残守缺,固步自封!别看‘快中子增殖反应堆的小型化应用’似乎很先进,但在可控核聚变技术研究出来后,它的价值就会大幅下降!”
陈继学忍不住道:“你说的有道理,但可控核聚变技术的话,起码要五十年后才有可能建成示范堆吧?”
核聚变是一种利用氢原子在极端温度和压力下发生融合反应、释放出巨大能量的技术,这个技术早已在氢弹中实现了,不过核聚变与“可控”的核聚变是截然不同的概念。
可控核聚变,俗称“人造太阳”,因为它模仿了太阳内部的核聚变过程。可控核聚变技术前景远大,所需的燃料仅是氢同位素,聚变过程也不会产生有害的放射性废物,一旦被攻克,就能提供近乎永恒的、清洁、安全、可持续的能源,因而被认为是清洁能源领域的“圣杯”。
为了建造反应堆级的核聚变装置,各国联合成立了ITER(国际热核聚变实验反应堆计划),夏国在这方面起步较早,从60多年前立项并投入大量的人力物力进行可控核聚变的研究,到后来也加入到ITER,并在磁约束核聚变方向上取得了一定的成果,比如目前全超导托卡马克(EAST)已实现了403秒稳态高约束模式等离子体运行,不过与其他国家,如米国、欧洲相比并不具备优势。
当然,哪怕是可控核聚变技术占据领先地位的米国,已经在NIF上成功进行了四次点火实验,但也依然仅仅停留在实验室研究的状态,距离应用有着遥不可及的距离。
陈继学所估计的“五十年后建成示范堆”,已是很乐观的时间了。
这里解释一下,所谓的“示范堆”,就是指用于演示聚交能发电的聚变反应堆原型,可以为将来建造商用聚变堆奠定科学理论和工程实践基础,是实现聚变能商业化应用前的最后一步。可以说,建成示范堆,就基本上具备商业化推广的可能了。
“五十年?”秦克微微一笑:“用不了这么久。”
杨承科一下子就站了起来,难掩希冀道:“秦克啊,你别卖关子了,你是不是也有偷偷研究可控核聚变这个方向?这个世